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An inviscid flow with infinite gradients at the wall poses a problem for the accom- 
panying boundary layer that is fundamentally different from the conventiona,l 
one of bounded gradients. It turns out that in both cases the external gradients 
do not affect the first-order boundary layer, but the unbounded gradients 
generate second-order corrections that are of a lower order in Reynolds number 
than the conventional ones. The present singularity in stagnation-point reacting 
flow is of an algebraic type, and the boundary-layer corrections that it generates 
are proportional to non-integral powers of the Reynolds number, with exponents 
that vanish with the rate of reaction. The present example clarifies such matters 
as the matching of boundary layer and singular inviscid flow, the structure and 
decay of the new corrections, and their ranking in comparison with the conven- 
tional second-order effects. Numerical computations illustrate the problem and 
give quantitative results in a few selected cases. 

1. Introduction 
Boundary-layer theory was developed to deal with thin regions of a flow 

(usually along a boundary), where some of the flow properties sustain drastic 
changes in the normal direction. In  fact, one of the basic ideas involved in the 
theory is that normal gradients in the boundary layer are large compared with 
those in the inviscid flow. The present paper deals with a case where this relation- 
ship is by necessity violated, since the inviscid gradients are unbounded near 
the wall. In  the present case, this situation arises when a slowly reacting inviscid 
flow approaches a stagnation point, where the lagging reactions start dominating 
the flow and drive it to equilibrium in a final burst involving infinite gradients 
of temperature, density, and concentration. 

The concept of a boundary layer was formulated by Prandtl in connexion with 
flow over a flat plate. In that case, the inviscid flow is uniform so that external 
gradients are absent. In  the ensuing applications the theory proved successful 
in cases where external gradients exist but are bounded, at least near the 
boundary in question. In  such cases the validity of boundary-layer theory can be 
supported from the point of view that Prandtl’s theory is the first in a system of 
approximations that describe the flow asymptotically as the Reynolds number 
approaches infinity. In  this view, any bounded external gradient is rendered 
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small in comparison with boundary-layer gradients, which become asymptoti- 
cally large with the Reynolds number. Thus, if the Reynolds number is large 
enough, the situation reverts to Prandtl’s. However, it is clear that unbounded 
external gradients cannot be similarly dismissed. It follows that an important 
distinction of principle must be drawn between unbounded external gradients 
and bounded ones, however large these may be. If the inviscid flow exhibits 
unbounded gradients at the wall, the applicability of boundary-layer theory is 
questionable, and it is not clear how the matching of boundary layer and inviscid 
flow will be accomplished. 

The presence of singularities in inviscid flows has been pointed out sporadically 
by different authors, but perhaps the first systematic treatment of a boundary 
layer under a singular inviscid flow is due to Burggraf (1966), who investigated 
radiating flow ncar a stagnation point in a transparent medium. Under these 
conditions the inviscid flow has a logarithmic singularity at the stagnation point, 
and the author constructed a boundary layer that matches that behaviour. This 
is not a conventional boundary layer though, since its thickness is a complicated 
function of the Reynolds number (involving a logarithm) rather than the familiar 
square root. Unfortunately, it turns out that this is a degenerate case that occurs 
when the wall enthalpy is a vanishing quantity related to the small parameter. 
If one reworks the problem retaining a fixed wall enthalpy of order unity the 
conventional boundary layer re-emerges, and the exotic effects are relegated to 
higher-order approximations. The same pattern appears in the present example 
where, in spite of an external singularity, Prandtl’s boundary layer is still the 
appropriate first approximation, but new higher-order effects come into play. 
The asymptotic expansion describing the flow in the boundary layer does not 
proceed in the usual negative half-powers of the Reynolds number, but in 
more general fractional powers that depend upon other parameters in the prob- 
lem. Thus, in a slowly reacting flow a number of such terms take precedence over 
the conventional second-order boundary layer. This, of course, upsets the order 
of the error that one has come to expect of boundary-layer theory. 

Two recent works where singularities appear in the inviscid flow share some 
of the characteristics described above. Lee & Cheng (1969) studied hypersonic 
flow in the ‘strong interaction’ rkgime, where the boundary layer itself forces 
non-uniformities into the inviscid flow. They formulated the problem in terms 
of a viscous layer, an inviscid external flow, and an intermediate layer. The 
first-order boundary layer is the conventional one, but new second-order effects 
appear. Similar features are present in the work of Hersh (1968), who con- 
sidered rotational flow near a three-dimensional stagnation point. There the 
singularity is connected with the stretching of vortex tubes in the vicinity of 
the wall. The second-order problem is not actually solved, but the existence of 
the solution is inferred on the grounds of being needed to match the external 
flow. 

In  the present work, as well as in Lee & Cheng’s and Hersh’s, the singularities 
appearing in the inviscid flow are of an algebraic form involving fractional or 
irrational powers of the distance to the wall. These singular flows generate second- 
and higher-order boundary layers having algebraic behaviour at  large distances 
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from the wall. In  particular, this involves an algebraic decrease of vorticity. (We 
shall retain the word ‘decrease’ to denote the behaviour in the boundary layer, 
and make a distinction with ‘decay ’, which involves a comparison with the level 
of vorticity in the outer flow.) The algebraic decrease is not discussed by Lee & 
Cheng, but is noted by Hersh, who concludes that there is an algebraic decay of 
vorticity, and as a consequence the new effects in fact outreach (by an order of 
magnitude) the conventional boundary layer, which decays exponentially. This 
conclusion is not supported by the present work. Boundary-layer phenomena have 
long been associated with exponential decay of vorticity, and the present investi- 
gation gives no reason to believe otherwise. The key question concerns the correct 
level from which the decay of vorticity should be measured. In  the present case 
the algebraic decrease of vorticity in the second-order boundary layer precisely 
matches a corresponding behaviour in the second-order outer flow (the flow due 
to displacement thickness, not investigated by Hersh). As a result the difference 
between boundary-layer and outer vorticity, when carried out to second order 
in the outer flow, does not contribute to an algebraic decay. If this extends to 
higher orders, as is likely, the exponential decay of the conventional boundary 
layer prevails, and the boundary-layer flow does not outreach itself through 
higher-order effects. 

A difficulty associated with the external singularity that is either absent or 
goes unnoticed in other works arises in the construction of uniformly valid 
solutions. The present investigation shows that if the external singularity is 
described asymptotically near the wall by a single algebraic term, then a single 
higher-order approximation in the boundary layer will remove the singularity, 
and a uniformly valid composite solution can be constructed in the usual way. 
Similarly, if the inviscid flow contains several singular terms, an equal number 
of higher-order approximations is needed to remove the singularity completely. 
If the available higher-order solutions are outnumbered by the singular terms 
(as in the present case), the composite solution or some of its derivatives will be 
singular at  the wall. Thus, one can find oneself in the position of having outer 
and inner solutions valid to a certain order, but lacking a systematic way to 
combine them into a composite solution that is free of singularities in all of its 
derivatives. 

One of the reasons for undertaking the present investigation was to assess the 
current engineering practice of ‘edge patching ’. This practice in effect ignores 
the singularity in the inviscid flow on the grounds that it will be buried in the 
boundary layer. The neighbourhood of the singularity is bridged simply by 
patching the boundary layer to the inviscid flow at some point beyond the 
singularity, where the edge of the boundary layer is estimated to be. This pro- 
cedure cannot be systematically improved, and therefore the order of the error 
involved cannot be estimated from within. Comparison with the present results 
shows that patching at  the physical edge of the boundary layer can give sub- 
stantial errors, but smaller errors arise from patching at  the displacement edge, 
and this last procedure may be acceptable for ordinary applications. 

In  the following sections we will develop in increasing detail the ideas already 
discussed. 

33-2 
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2. Analysis General remarks and assumptions 

Reacting flow near a blunt stagnation point provides a good example to test 
boundary-layer theory in the presence of a singular inviscid flow, since the singu- 
larity involved is of a general algebraic type with variable exponent. Thus, one 
can study the effects of the singularity as the exponent varies from zero to in- 
finity, and we shall see that the magnitude of the exponent determines whether 
those effects are larger or smaller than the conventional second-order corrections. 
From a physical standpoint, the inviscid singularity arises from the inability 
of the reacting flow to accommodate immediately to changing local conditions. 
Thus, the flow may reach the vicinity of the stagnation point substantially out 
of chemical equilibrium, but since the point itself is in equilibrium, the stagna- 
tion neighbourhood will sustain large thermodynamic gradients. This situation 
is more pronounced in slowly reacting flows, which may derive from small 
reaction rates, low density, small body dimensions, or high flow speed. In  any 
case, the slowly reacting inviscid flow struggles t o  reach equilibrium within a 
small region, and in the absence of dissipative mechanisms to check the steepening 
of gradients, these become unbounded near the wall. We will see that rapidly 
reacting flows have zero gradients at  the wall, but the singularity is still present 
in some higher derivative as long as the flow falls short of complete equilibrium. 

In order to study the interaction of boundary layers and singular inviscid 
flows, we shall strip the problem of as many complicating features as possible. 
To this effect, we adopt the ideal dissociating gas (Lighthill 1957), which is one 
of the simplest models in general use for the common atmospheric gases. The 
molecular-transport effects that generate viscosity, heat conduction, and dif- 
fusion are assumed to be such that the Prandtl and Lewis numbers are unity and 
the coefficient of viscosity is constant. It is presently known that the coefficient 
of viscosity and the Lewis number may vary substantially in the flow field, and 
engineering applications may require that this be accounted for. In  particular, 
the ' compressibility transformation' and similar techniques are available to 
relax the restrictions, but we ignore such refinements in the name of simplicity. 
As a consequence, we shall spend no effort in trying to correlate present numerical 
results with available data; instead, we shall concentrate on the basic questions 
of applicability of the boundary-layer concept, matching with the inviscid flow, 
order of the error involved, and the like. 

We will make a further assumption that bears some discussion. The present 
problem involves a chemical length and a viscous length, and one can consider 
different asymptotic limits depending on which one vanishes faster. In fact, the 
more realistic problem may be one where these lengths retain a fixed ratio, but 
we investigate here the case of small viscous length (large Reynolds number) 
with fixed chemical length. Thus, we regard the present problem as an extension 
of the classical boundary-layer theory, which applies when the viscous length is 
small compared with other lengths in the problem. As in the classical case, we 
will compute numerical examples for finite values of the Reynolds number (and 
chemical parameter), but the reader is reminded of the special nature of the 
present asymptotic limit. 
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We will cast the problem in the form of matched asymptotic expansions, as 
described by Van Dyke (1964). The details concerning dimensionless variables, 
differential equations, boundary and symmetry conditions, and the choice of 
co-ordinate system, are found in the appendix. The co-ordinates are shown in 
figure 1. 

FIGURE 1. Co-ordinate system and velocity components. 

The outer expansion 

We are interested in a small neighbourhood of the stagnation streamline, and 
therefore we expand each flow variable (according to its symmetry) in even or 
odd powers of the co-ordinate x, and retain only the first term of the series. In 
addition, we re-expand this term for large Reynolds number. In  this second 
expansion the leading term represents the inviscid flow, and we assume on a 
trial basis that the secondary term represents the flow due to  displacement 
thickness, and is proportional to the inverse square root of the Reynolds number 
as in the conventional case, It follows that the outer expansion for, say, the 
degree of dissociation is 

1 
&(x,y; 3) = al(y)+--a,(y). R* .. +o(x2). (1) 

Expansions for the other variables are found in the appendix (equations A 2). 
Substitution of the outer expansions into the governing Navier-Stokes equations 
(A 1) yields the ordinary differential equations for the first-order problem (A 3) 
and the second-order problem (A 4). The corresponding boundary conditions 
are obtained by similar substitutions. With the problem cast in this form, we 
abandon the x-dependence of the flow variables and work with functions of y 
alone that represent the flow in a small neighbourhood of the stagnation 
streamline. 
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The jirst-order outer problem 

This problem, governed by equations (A 3), describes the inviscid flow and has 
been solved by Conti & Van Dyke (1969). In  this section we discuss the main 
results of that work. A complete solution is available in numerical form, and an 
asymptotic solution for y 3 0 is available in analytical form. For present pur- 
poses we concentrate on the latter, which is needed to match the inviscid flow 
to the boundary layer. The asymptotic solution shows that in some neighbour- 
hood of the stagnation point (y = 0) the inviscid flow is described by series in 
positive powers of y, containing both integral and non-integral powers. The 
integral powers are the same that appear in inert flows. The non-integral powers 
are associated with the chemical reactions, and contain a reaction parameter 
having the form of the Damkohler number. The general term of the series is 
of the form Y ~ + ~ K ,  where m and n are positive integers or zero, and the reaction 
parameter K is 

Here 7, = [ p d ( l - a O ) ] / [ ~ p ~ - a 0 ( 2 - - a , ) ]  is the chemical relaxation time at  the 
stagnation point, and 1/A is the flow time, related to the velocity gradient at 
the stagnation point by A = (j + 1) (au/az), = - (av/ay),. The reaction parameter 
K ranges from zero in frozen flow to infinity in equilibrium flow. 

It is clear that the presence of lion-integral powers makes every flow variable 
singular to some degree, but some variables are less affected than others. Thus, 
the normal velocity and the variations in pressure and enthalpy retain to 
lowest order the same behaviour as in the inert flow; that is, 

On the other hand, the tangential velocity, temperature, density, and degree of 
dissociation, which share a common behaviour, may depart significantly from 
the inert flow, depending on the value of K .  These variables are described by 
series of the form 

al-a0 = B,y2+B2y3+ ... +ClyK+C2y2K+... + D , ~ l + ~ + O ~ y 1 + 2 ~ +  ... , ( 2 4  

where Bi, Ci, Di are constants. For K > 2 the leading term is the quadratic one 
(as in the inert flow), but for K < 2 one or more non-integral powers take pre- 
cedence. In fact, as K -+ 0 an unbounded number of such terms will precede 
the integral powers. We note that the case K = 1 is a divide between slowly 
reacting flows (0 < K < I), which approach the stagnation point with unbounded 
gradients proportional to yK--l, and rapidly reacting flows (1 < K 6 m), which 
approach with vanishing gradients. The singularity is then stronger in the slowly 
reacting flows, where it affects the first derivative, than in the rapidly reacting 
flows, where it affects a higher derivative. For this reason we adopt the slowly 
reacting flows as the basis for our present study. For K < 1, Conti & Van Dyke 
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(1969) have solved for the leading terms of the series. In present notation, the 
results are : 

a, = a, + C, y K ,  ( 2 4  

u1 = A+C,yK, (2.f) 

P1= Po + CpY", ( 2 d  

where 
AP C, c, = 

2 -  (j+ l ) K a , '  

c, c = - p o p - ,  
a0 

P 

and A ,  ao, po, To, C, are constants obtained numerically for specific examples. 
Equations (2) describe the inviscid flow near the wall, and we will use them to 
deduce the behaviour of the boundary layer. 

The inner expansion 

The inner region lies near the wall, and its scale is of the order of the viscous 
length. We expand the variables in powers of x, as in the outer region, and then 
magnify the normal velocity component and co-ordinate by the square root of 
the Reynolds number, as dictated by boundary-layer theory. The leading term 
of the inner expansion will then describe the conventional stagnation-point 
boundary layer. Our point of view is that unless otherwise proved wrong, this 
should be expected to be the first approximation to the flow. The secondary 
term is of an order 8, to be determined by matching to the outer flow. The result- 
ing inner expansion is of the form 

a(%, 'I; R) = a4,(7) +€(R) a&) + . . . + O(x2), 8 -+ 0. (3) 

Further details are presented in the appendix, in equations (A 5). Substitution 
of the inner expansions into the Navier-Stokes equations (A 1) yields the first- 
order inner equations (A 6) and the second-order inner equations (A 7). Similar 
substitutions give the corresponding boundary conditions. 

The Jirst-order inner problem 

This problem is governed by equations (A 6) and the boundary conditions listed 
below them. It is the conventional problem for the stagnation-point boundary 
layer, and need not be reviewed here in its details. Matching to the first-order 
outer solution confirms that this is the appropriate first approximation to the 
flow, the outer singularity notwithstanding. This is so because the outer singu- 
larity affects only the derivatives of the outer solution, and these do not enter 
into the matching process to the present order. The outer functions themselves 
have finite values at  the wall (equations (Z)),  and the inner functions approach 
these values asymptotically. It is true that each of the outer functions reaches 
its asymptote with infinite first derivative whereas the inner do so with vanishing 
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derivative, but this apparent discrepancy is irrelevant to  the present order, and 
will be accounted for in the higher approximations. Numerical results for the 
inner problem are discussed in 0 3. 

The second-order inner problem 

In this problem the effects of the outer singularity are felt in full force, because 
the far boundary conditions (as 7 + CO) and the form of the parametric function 8 
in the inner expansion are imposed by the outer solution. To illustrate this inter- 
action we follow the matching process in detail for our sample variable a. In 
order to involve the second-order inner functions, the matching must be carried 
out at least to order R-BK. The outer expansion (l), to relative order R-W, is 

Expanded to relative order Rd”, ( R  -+ co), with the use of ( 2 e ) ,  this gives 

a = LX~+C,[~”/(AR)*~].  (4c) 

This indicates that in the inner expansion (3), E(R) must be of order R-BK, since 
then the inner expansion to that order is 

Expanded to relative order R-iK, ( R  -+ a), this gives 

a = “il(?l) + q z ( r ) ,  r -+ 0. (4f 1 
Following the matching rule, we equate (4f) and (4c). We already noted that 
the first-order function approaches the inviscid value a t  the wall; that is, 
cci,(oo) = ao. The second-order matching condition is then 

€ai2 + C,[rE/(AR)SK] as 7 -+ co. 

For convenience we absorb the factor A$K into e, and set 

E = 1/(AR)iK, ai2 -+ CarK as 7 + CO. (5) 

The rest of the variables are matched in a similar way, and the results are given 
in the appendix. Equations ( 5 )  summarize the novel features of the present 
problem. The second-order boundary layer is of order R-hK instead of the con- 
ventional R-*, and the functions of are new, since far from the wall each behaves 
like a non-integral power of the distance instead of approaching a constant or 
an integral power as in the conventional second-order boundary layer. The fact, 
that the reaction parameter K appears in the exponent of the Reynolds number 
is of significance, because in slowly reacting flows of practical importance K may 
be as small as one-tenth or one-hundredth. In  such cases, R-*K will be a much 
larger number than R-4, as the reader may be surprised to discover with a quick 
calculation. However, the threat of an exceptionally large second-order correc- 
tion does not seem to materialize in the present case. A few numerical examples 
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($3 )  show that as K + 0 the increase in E is offset by a decrease in ai2. Never- 
theless, this cornyensating effect may not be universal, and one should be warned 
of the possibility of large corrections due to the outer singularity. 

In  order to study the structure of the solutions far from the wall, we investigate 
the second-order differential equations (A 7)  as 7 --f 00. The coefficients of these 
equations contain the first-order variables, and we assign to them their asymp- 
totic values a,,, po,  h,, To, 1 (for uil) and 7 - /3 (for w i l ) ,  where /3 is the displacement 
thickness. These variables approach their asymptotes exponentially, with an 
error of order exp ( - r2). We look for solutions of the asymptotic differential 
equations in the form of power series, the leading term being of the required type 
CqK. Substitution into the differential equations shows that such solutions exist, 
and are: 

The variables hi, and pi2, which do not match singular terms in the outer expan- 
sion, approach zero to any algebraic order as 7 + GO. Equations (6) show the 
algebraic structure of the second-order functions in the outer fringes of the 
boundary layer. This structure differs from the conventional exponential decay, 
but it should not be construed as an algebraic decay in an absolute sense, since 
the outer flow matches this behaviour at least to second order, and probably to 
higher orders as well. We shall return to this matter and elaborate on the decay 
of vorticity in a later section. The numerical solution of the second-order problem 
is discussed in $3.  

Higher orders in the inner expansion 

The sample matching of the previous section reveals several features of the 
inner expansion. It is clear that as the matching process is carried out to higher 
orders, more terms of ( 2 4  will enter in (4~)) and will have to be matched by ( 4 4 .  
That is, the inner expansion will include terms of order R-HK, R-", Rd(l fK) ,  . . . , 
all of which match the first-order outer solution. The situation differs from the 
conventional one, where matching proceeds term by term, alternating between 
the outer and inner expansions. We see then that the inviscid singularity has 
spawned a number of new higher-order boundary layers, and this number grows 
without bound as K -+ 0. 

It is of interest to see how the conventional second-order boundary layer is 
recovered. The transition occurs at K = 1, which is a singular case as explained 
by Conti & Van Dyke (1969). Without dwelling on this case, we note that when 
K > 1, matching to order R-4K requires that the outer expansion (1)  be considered 
at least to the second order, R-t. Thus, (4a)  becomes 

and ( 4  c) becomes 1 1 car" a = a0+-a2(0)+ ...+-- R+ RtK A?& ' 
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Now the secondary term is given by the conventional flow due to displacement 
thickness, and the matching boundary layer will be the conventional second- 
order one. This completes the ranking of the new terms in the inner expansion. 
In  slowly reacting flows (0 < K < 1) one or more of the new terms, derived from 
the inviscid singularity, are the leading corrections to the classical first-order 
boundary layer. In  rapidly reacting flows (1 < K < GO) the leading correction 
is given by the usual second-order boundary layer, and the new terms are of 
some higher order. 

Decay of vorticity 

We noted earlier that in slowly reacting flows the singularity in the inviscid flow 
creates a new form of higher-order boundary layer, having an algebraic structure 
far from the wall. In  particular, this involves an algebraic decrease of vorticity. 
Since in ordinary forced-convection flows there are compelling physical reasons 
for the vorticity in the boundary layer to decay exponentially to the outer value, 
the algebraic behaviour of the new boundary layer should be regarded with 
suspicion. To scrutinize this matter we use the inner expansions (A 5 )  to compute 
the magnitude of the vorticity in the boundary layer, and find that 

As 7 + CQ the function uil (from classical boundary-layer theory) is of order 
exp ( -  $). Any contributions to algebraic decay must come from ui2 and the 
successive higher-order terms. From (Ba), as 7 -+ co 

(7) 

Here the first term is the asymptotic value of u& that matches the first-order 
outer flow, and the rest of the terms describe the decaying function. On first 
inspection it seems that the decay is algebraic, but this is true only when it is 
measured from the first-order level. Instead, the decay should be measured from 
the actual level in the outer flow. Should higher approximations in the outer 
flow contain terms that match every term in (7) and in the higher orders, the 
algebraic contributions to the decay of vorticity would vanish. To furnish such 
proof is out of the present scope, but it seems natural to search for the would-be 
partner of the first 'decay' term, that involving p(l -K)q-l  in (7). In outer 
variables this is /I( 1 - K)/[y(AR)*] and therefore the outer partner belongs in the 
flow due to displacement thickness, represented by az(y )  in (1) .  To establish (or 
rule out) the actual existence of such a term in the outer flow, we need the asymp- 
totic solution of the second-order outer problem as y -+ 0. We obtain this solution 
by substitution of power series into the outer equations (A 4)) but we will omit 
a detailed account. The results show that the flow due to displacement thick- 
ness indeed matches our term p( 1 - K) 7-l and all corresponding terms for the 
other variables. This, of course, does not prove that the vorticity decays ex- 
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ponentially, but it shifts the burden of proof. From the regular ordering of the 
problem it seems likely that the process will be repeated in higher orders, and the 
exponential decay of the first-order term will prevail. 

Composite solution 
After obtaining outer and inner solutions we wish to  combine them, without loss 
of accuracy, into a composite that is valid in both regions. Such a composite is not 
unique, and there are several ways of forming it. We adopt the additive rule; 
that is, we add the outer and inner solutions and subtract the inner expansion 
of the outer expansion to get, for the sample variable a: 

a c  = aouter + ainner - [ g o  +Qaq"/(AW"I* 
This result has a disturbing feature that derives from the singularity in the 
outer solution. This can be examined by expanding the composite near the 
wall. For the outer function we use ( 2 4  rewritten in inner variables, and 
obtain 

aC = "0-k c,'f/(AB)BK -k o[T"/(AR)"I + a$l+ai2/(AR)*"- [a~+C,r"/(AB)~"lt 
= ail fcci2/(AB)*" + O[qZK/(AR)K]. 

This recovers the inner solution, with higher-order terms left over from the 
outer. It is precisely in these higher-order terms that the difficulty lies, because 
they are singular at  the wall. For example, for K < the first derivative of the 
composite is infinite at  q = 0. This situation worsens as K -+ 0. We see by in- 
spection that if the outer singularity involves % finite number of terms, an 
equal number of higher-order approximations in the boundary layer will remove 
the difficulty. Short of this goal, as more higher-order approximations are 
calculated, the anomaly is shifted to a higher derivative. The composite solu- 
tion can still be used to link inner and outer flows, but its usefulness to 
calculate derivatives at the wall is limited. The numerical results of § 3 illustrate 
this problem. 

3. Numerical results 
The first-order outer problem and the first-order and second-order inner 

problems are solved numerically with the help of a high-speed computer. These 
problems involve ordinary differential equations, which are integrated using 
a standard Runge-Kutta technique. We discuss an example of axisymmetric 
flow over a body having a catalytic wall, with the data shown in table 1. The 
free-stream conditions are typical of a sub-orbital ballistic re-entry into the 
atmosphere. The parameters in the ideal dissociating gas correspond to oxygen 
and nitrogen, mass-averaged according to their proportions in the atmosphere. 
The rate of reaction appears in the parameter r, which is taken as constant in the 
ideal dissociating model. Calculations using a more realistic model of a diatomic 
gas show that r varies substantially across the shock layer, and one should be 
prepared to accept a factor of 10 as a typical uncertainty. Accordingly, we con- 
sider three examples where all other parameters remain the same, but r ranges 
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over an order of magnitude. This serves the further purpose of studying the 
effect of a change in the reaction parameter K at fixed Reynolds number. 

The outer problem is discussed in detail by Conti & Van Dyke (1969). The 
integration proceeds from the shock wave to the body. The singularity at  the 
stagnation point is of the stable-equilibrium type, and it fixes the values of 
A ,  C,, and, say, p,.  These quantities are sufficient to determine all other charac- 
teristics of the stagnation point, such as the state of the gas and the reaction 
parameter K .  Selected results are shown in table 1. 

Free stream Ideal dissociating gas Shock wave Body 

Speed : Dissociation temperature : Radius : Axisymmetric. 
5.9972 km/sec 102,300 OK 5 cm Catalytic wall. 

Density : Dissociation density : Density ratio : Wall temperature : 
3.48 x g/cm3 134 g/cm3 117 2000 O K  

(altit,ude 41 km) Molecular gas constant: 
287 mz/("K secz) 

Dimensionless variables 

(0 = 40, pd = 5.5 x lo6, ho = 2.45, R = 10,443.) 

r K G a  A PO a 0  Po A P 
3.900 x lo4 0.0498 - 0.0285 5,4630 6.6226 0.3488 2.0244 0.0636 0.3824 
1.422 x lo5 0.1843 -0.0475 5.4312 6.6601 0.3487 2.0354 0.0580 0.3821 
3.900 x lo5 0.5110 -0.1651 5.4102 6.6862 0.3486 2.0430 0.0542 0.3831 

TABLE 1. Free-stream conditions and selected results. 

The first-order inner problem describes the conventional stagnation-point 
boundary layer. The points 7 = 0 and 7 = co are critical points of the system. 
Marching integration, either forward (increasing 7) or backward (decreasing v), 
involves the guessing of three constants at the initial point, and iterations thereof 
until all boundary conditions at  the opposite end are satisfied. Forward integra- 
tion is unstable (and backward is stable), but due to the simplicity of the present 
problem a practical way was found to deal with the instability of the conventional 
forward integration. This is based on the observation that if we follow the 
spurious solutions (rather than abandoning them soon after they depart from 
the correct behaviour) they eventually fall into the form 

Uil = Al+A,7 ,  hi, = A,, Pi1 = A,, 
where the A,  are constants. At this point we can stop the integration and iterate 
on the initial unknowns so as to make A ,  +- 0, A ,  +- h,, A ,  +- po. This will make 
A, +- 1, and the solution will approach the correct one. The iteration process is 
stopped, and the solution accepted, when the variables attain their correct 
asymptotic value within l O W ,  with derivatives smaller than 10-8, at 7 = 5 .  

The second-order inner problem is linear. We exploit this fact by constructing 
the solution through a linear combination of any three solutions, obtained by 
assigning arbitrary values (say, 1 and 0) to the unknown quantities at 7 = 0. The 
linear combination is then formulated in such a way that equations (6) are satisfied 
at  a large 7, say 7 = 50. To test the accuracy of the results a new integration is 
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YIA 
FIGURE 2. Degree of dissociation in the shock layer. The outer variable y is referred to 
the standoff distance. The composite solution is shown in solid lines, the outer solution 
in broken lines. 
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FIGURE 3. Degree of dissociation in the boundary layer for K = 0.184. 
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performed using the initial conditions obtained in the previous step, and the 
results tested against equations (6) at regular intervals, up to 7 = 100. A solution 
is accepted when the variables differ from equations (6) by less than 

0 1 2 3 4 5 

?I 

FIGURE 4. Tangential velocity component in the boundary layer for K = 0.184. 
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T 

FIGURE 5. Density in the boundary layer for K = 0.184. 
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Some numerical results, obtained under the conditions listed in table 1, are 
shown in figures 2-9. Figure 2 gives an over-all view of the degree of dissociation 
in the shock layer, for several values of K.  In  particular we note the singular 
behaviour of the outer solution near the wall (broken lines), and how this is 

0.3 

0.2 

0.1 

c. 

21 
-e 
% 

0 

-0.1 

I First-order inncr 

Second-order inner 

I 

1 

7 
FIGURE 6. First derivative of the degree of dissociation in the boundary layer, 

showing the singularity in the composite solution. 

modified by the boundary layer. Figures 3-5 show the variables in the boundary 
layer for K = 0.184. The inner solution is shown to first and second orders, and 
the outer solution (in terms of the inner variable 7) is included for comparison. 
We note how the composite solution merges with the inner and the outer solutions. 
The anomalous behaviour of the composite solution near the wall, which we 
discussed earlier, is not visible to the scale of the drawings. To illustrate the 
problem we refer to figure 6, showing the first derivative of the degree of dis- 
sociation. As we recall, the troublesome term in the composite solution is of order 
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FIGURE 7. Effect of the reaction parameter K on the degree of dissociation, 

illustrating the lack of sensitivity of the second-order correction. 
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FIGURE 8. Effect of patching the first-order boundary layer 
t o  the displacement and physical edges. 
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qz near the wall. The first derivative, of order ym--l, is infinite for K < 4 but 
finite otherwise. Figure 6 shows the singularity for K = 0.050 and K = 0.184, 
and its absence at K = 0.51 1. Again, the singularity in the next higher derivative, 
which affects all cases shown, is lost to the eye at  K = 0.51 1 in the present scale 
of the drawing. 

Figure 7 illustrates the effect of the reaction parameter K on the magnitude 
of the second-order correction. As K + 0 the second-order factor (AR)-gK 
increases drastically as indicated in the insert, but at  the same time the function 
aiZ decreases in such a way that the overall correction (in broken lines) remains 
roughly the same. 

8 

6 

2 

0 
0 1 2 3 4 5 

4 

FIGURE 9. Effect of patching the fist-order boundary layer 
to the displacement and physical edges. 

The difference between systematic boundary-layer theory and 'patching ' is 
shown in figures 8 and 9. Here the boundary-layer results are presented to first 
and second order. The patching consists in calculating the first-order boundary 
layer with the boundary conditions at  q = 00 corresponding to some point in the 
interior of the inviscid flow. Two sets of patched solutions are presented, with 
the interior point located either at the displacement thickness or at the 'physical 
thickness' (where the velocity differs by 0.1 yo from the asymptotic value at 
infinity). Patching at  the displacement thickness yields a degree of dissociation 
that agrees very well with the boundary-layer result to second order, but this 
must be regarded as largely fortuitous. The tangential velocity does not agree 
equally well. Furthermore, the results are sensitive to the selection of the point 
of patching. On the other hand, we note that in general the results of patching 
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differ from the correct first-order boundary layer in the proper direction, as 
estimated from the second-order correction. A further assessment of the errors 
involved in patching can be obtained by comparing the first derivatives of flow 
variables at  the wall, which are presented in table 2. 

Derivative (d/dy),,, 

Patched 

Variable K order second order thickness) 
First First plus (displacement 

[ ( j +  l / ~ ) ]  u 0.511 1714.8 1746.4 1854.7 
0.184 1721.4 1753.5 1863.6 
0.050 1731.8 1766.7 1867.8 

a 0.511 63.575 61-907 62.708 
0.184 63-919 60-447 59.821 
0.050 64.088 59.487 54.331 

P 0.511 - 435.47 - 405.46 - 441.41 
0.184 - 429.01 - 480.29 - 465.58 
0.050 - 424.22 - 489.34 - 528.15 

h 0.511 3157.6 3166.5 3140.8 
0.184 3159.0 3153.1 3098.9 
0.050 3159.7 3146.4 3020.7 

TABLE 2. Derivatives a t  the wall, from the inner solution. 

Patched 
(physical 
thickness) 

2462.0 
2413.6 
2335.9 

60.701 
56.515 
49.260 

- 455.66 
- 494.30 
- 565.87 

3103.9 
3048.9 
2965.4 

4. Concluding remarks 
The previous results establish the general structure that the boundary layer 

will assume in the presence of an external singularity of algebraic type. To display 
this structure we write the outer solution near the wall and the inner solution 
far away from it, with matching terms arranged in columns. Selecting the range 
$ < K < as an example, we write the following for the tangential velocity, 

Outer : 

Inner : 

= A +exp 

1 +- 
1 

( A X ) @  [ ' U r K  

(AR)K [ 

1 +- (AR)* 

+-- 

[ 

- PKCuyKfl + 0(rK-2)1 

+ .. 
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In the outer expansion the conventional terms are the ones in integral powers 
(a linear term in y would be addedif we had external vorticity, and this would be 
matched by a term of order r,~ in the last row of the inner expansion). The inner 
expansion is led by Prandtl's boundary layer (first row), which is followed by 
two new corrections, forced by the non-integral powers in the outer expansion. 
The conventional second-order boundary layer (last row) enters through the 
displacement effect (of order /3), and becomes the leading correction as soon as K 
exceeds unity. The previous expansions show the general ranking of terms within 
each approximation, and the ordered pairing of the new, non-integral powers. 

The authors are indebted to P. D. Thomas for advice on the integration of 
differential equations with singular end-points, and to H. Kirch for programming 
and executing the numerical integration. 

Appendix Dimensionless variables and governing equations 

We consider the flow of an ideal dissociating gas (Lighthill 1957) in the vicinity 
of a blunt stagnation point. The flow variables are made dimensionless by 
reference to the radius of curvature of the shock wave r, and the normal velocity 
and density behind the shock wave, us and p,. Thus, the co-ordinates x and y are 
referred tor,, the velocity components u and v to us, the densityp top,, the pressure 
p to p,v,", the enthalpy h to v:, and the temperature T to v:/Rm, where R, is the 
molecular gas constant. The dimensionless degree of dissociation (atom mass- 
fraction) is denoted by a, and its fictitious 'local equilibrium' value by a*. The 
parameters appearing in the equations are the Reynolds number R = (p,vsr,)/,u, 
the characteristic density of dissociation pd (referred to p,), the characteristic 
temperature of dissociation 0 (referred to v2,/Rm), the rate of reaction I' (referred 
to v,/(~,p,)), and the constant j, equal to one for axisymmetric flow and zero for 
planar flow. The Prandtl and Lewis numbers are assumed to be unity, and the 
coefficient of viscosity ,u to be constant. With the previous definitions and 
assumptions the conservation equations (Navier-Stokes) are as follows: 

Mass : a a 
- (xipu) +- (x fpv)  = 0. 
ax aY 

x-Momentum : 

y-Momentum. 

34.2 



532 R. Conti and M .  Van  Dyke 

Species : 

State : p = ( l+-a)pT,  h = (4+a)T+Oa. 

a*2 
Law of mass action : -- - b e x p  (-k) 

1--a* p 

~ o u n d u r y  conditions 

On the downstream face of the shock wave the translational and rotational 
degrees of freedom of the molecules are assumed in equilibrium, and molecular 
vibration is assumed half-excited, as required by the ideal dissociating gas. The 
degree of dissociation is assumed to be zero. Under these conditions the ideal 
dissociating gas has a ratio of specific heats y = $. For hypersonic flight con- 
ditions with negligible upstream pressure, the density ratio across the shock 
wave is then K M ( y -  l)/(r+ 1 )  = 3, and the boundary conditions for the flow 
variables near the dividing streamline are: u = X/K, w = - 1, p = 1, a = 0, 
p = T = Ih 4 = (1 - K ) / K  and a* = 0.999857 (from (A lh ) ) .  On the body the 
boundary conditions are u = 'u = 0, T = T, = constant, and a = a* (catalytic 
wall), or da/dy = 0 (inert wall). 

Outer flow 
In  the outer ('inviscid') region the independent variables are x; and y (figure 1 )  
and the dependent variables are expanded as follows (with 6 = l/R*): 

( A 2 4  

( A 2 b )  

( A  2 ~ )  

j + l  
~ U ( X ,  y ;  R) = u ~ ( Y )  + 6 ~ 2 ( y )  + . .. + 0 ( x 2 ) ,  

- ~ ( x ,  y ;  R) = S ( y )  + 6~2(y) + . . . + 0 ( x 2 ) ,  

X 

P ( X ,  Y ;  R) = Pi(Y) + sP2(Y) + - - -  +X2b12(y) + 6p22(~)1+ O(x4). 

All other thermodynamic variables follow the form of p .  
First-order outer equations. The arrangement of the equations is the same as 

in ( A l )  

.f2 = Pd -exp (-;). 
1 - 4  P1 

Assumption: p12 = [ -pl/(rb + Y ) ~ ]  + @:/[2(r, + y)]} ,  where r, is the dimensionless 
distance between the stagnation point and the centre of curvature of the shock 
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wave. This assumption is a variation of the method of series truncation, and the 
form of p12 is dictated by the choice of co-ordinate system (see the last section 
of the appendix). 

Pirst-order outer boundary conditions. At the shock wave u1 = (j+ l ) / ~ ,  
v1 = p1 = 1, a, = 0 and p ,  = (1 - K ) / K .  The body is located at the point where 
v1 = 0. 

The first-order outer problem is non-linear, and can be solved as an initial- 
value problem (inverse method for flow behind a given shock wave). The differen- 
tial equations have a node-like singularity at  the body that sets the values of the 
inviscid stagnation-point quantities p,,, a,,, p,,, etc., as well as the constants A ,  
C,, C,, K ,  etc., discussed in the text. Further details about this problem, including 
the series-truncation assumption, are discussed in Conti & Van Dyke (1969).  

Xecond-order outer equations 

PlUZ + U l P 2  - ( V l P 2  + PlVZ)’ = 0, ( A 4 4  

plviu;-;-pp1ulu2+p1u;v2+ ~ 1 ~ 1 - 7  ~ 2 - 2 ( j +  1)p22 = 0, (A4b) 

( A  4 4  

P l ~ l h ; + ~ l h 1 1 ) 2 - ~ 1 P ; ,  = 0, (A 4 4  

( ’ 2 1 )  
2 

3 + 1  
p,v,v;+ p,v;v, + v1v; P 2  + P;  = 0, 

Xecond-order outer boundary conditions. At the shock wave 

uz = v 2  = p z  = p 2  = a2 = 0. 

Unknown: v;. At the body the normal velocity v2 is the ‘displacement velocity’ 
from the first-order boundary layer, and is determined by matching to the 
first-order inner solution. 

The second-order outer problem (examined only asymptotically in the present 
work) is linear and can be solved by superposition of arbitrary solutions to 
satisfy the shock and displacement-velocity conditions. 

Inner  flow 
The inner (boundary-layer) region has a thickness of order S = l /Rt .  The inde- 
pendent variables are x = 2 and 7 = A t y / S ,  where A = u,(O) is a constant pro- 
portional to the velocity gradient at  the stagnation point in the outer flow. In  
the innerregion the dependent variables (denoted by the subscript i) are expanded 
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with all other thermodynamic variables having the same form as p. The small 
parameter E(R) is determined by matching to the outer solution and is E = &"/A*". 

First-order inner equations : 

Piluil- (PilVil)' = 07 

4 1  + Pi lVi1u; l -  rPilutl/(j + 111 + [P,/( j  + 111 = 07 

(A 6 4  

(A 6b) 

pil = constant, (A 6 4  

K;l+pilvilh;l = 0, (A 6 4  

(A 6 e )  
APd 

P i 1  = (1 +ocilf ~ i l T i 1 ,  (A 6 f )  

hi, = (4 +ail) q, + oai1, (A 6g) 

4 1  + P i l V i l 4 1 +  __ Pi1 ( m1 (a:l-ail) = 0, 

First-order inner boundary conditions. At the wall (7 = 0) ucl = vil = 0,  
Ti,  = Tw = constant, and mil = azl (catalytic wall) or all = 0 (inert wall). Here 
the unknown quantities are uil, hil, and ail (or ail for the inert wall). The far 
boundary conditions (7 + 00) are obtained by matching to the outer flow and are 
uil = 1, hi, = h,, ail = a&. Matching also gives pil = p,. 

The first-order inner problem represents the conventional boundary layer. 
It is a non-linear boundary-value problem, and is solved by guessing the three 
unknown quantities at  the wall until the far boundary conditions are satisfied 
at  sufficiently large values of 7. 

Second-order inner eqwtions : 

PilUi2 + % P i 2  - ( V i l P i 2  + P i l V i 2 ) '  = 0 ,  (A 7 a )  

' 2  2 ( j  + 1) u;2+pilvilui2-;---p. 21 u .  a1 u. 22 +p .  21 u! 21 v. a2 + ( 0. zl u! 21 -7 2 1 )  p. a2 -_____ A 2  p i 2 2  = 0, 
3 + 1  

(A 7 b )  
pi ,  = constant, (A 7c)  

(A 7 4  h ; 2 + p i 1 v ~ l h ; 2 + v i l h ~ l p i 2  + P i l h i l V i 2  = 0, 

Second-order inner boundary conditions: At the wall (7 = 0 )  

ui2 = vi2 = T. = a .  - a=! - 0. 22 a2 - 22 - 
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Here the unknowns are u;,, a;, and hi,. The far boundary conditions (7 -+ 00) are 
obtained by matching to the outer solution. They are: ui2 N (CJA)  qK,  ai2 - CarK, 
piz - C,,qK, hi2 = 0,  where C,, C,, C,,, A,  K are constants obtained from the 
first-order outer solution. Matching also gives pi, = pi,, = 0. 

The second-order inner problem is linear, and therefore the solution is con- 
structed by superposition of three solutions, where the unknowns at  7 = 0 are 
assigned arbitrarily. Then a linear combination of these solutions is formed in 
such a way as to satisfy the far boundary conditions at sufficiently large values 

The choice of co-ordinate system 

The present problem poses conflicting requirements for the co-ordinate system. 
The outer solution should be carried out in shock-oriented co-ordinates, but the 
inner solution should be carried out in body-oriented co-ordinates. As a com- 
promise we adopt the Cartesian system of figure 1, which, if less than ideal, is 
sufficient for present purposes. The outer problem is poorly posed in these co- 
ordinates, but we take advantage of the truncation assumption to improve the 
situation. We assign the value of p,, in such a way that the differential equations 
take on the form that would be obtained in polar co-ordinates centred on the 
centre of curvature of the shock wave; these are natural co-ordinates for the 
outer problem. In the first-order inner problem our Cartesian system is indis- 
tinguishable from the conventional ' boundary-layer ' co-ordinates. It turns out 
that this is also true to second order, because the conventional effects of nose 
curvature, which are of relative order R-h, are presently of a higher order than 
the second. However, we keep in mind that when the reaction parameter K 
exceeds unity, the conventional second-order effects take precedence, and the 
Cartesian system should be abandoned since it is inadequate to deal with the 
effects of nose curvature. 

of 7. 
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